Consider the following ODE: $z \frac{dN_{\phi}}{dz} + N_{\phi} - Az = 0$ where $A = \sec \beta (p_0 \tan \beta - p_{\phi}) = \text{constant}$

This will be solved using the 'exact solution' method (James, 2001).

The above ODE may be expressed in the following form: $p(z, N_{\phi}) \frac{dN_{\phi}}{dz} + q(z, N_{\phi}) = 0$

Let $h(z, N_{\phi})$ be the exact solution such that $\frac{\partial h}{\partial N_{\phi}} = p(z, N_{\phi})$ and $\frac{\partial h}{\partial z} = q(z, N_{\phi})$

Thus:
$$p(z, N_{\phi}) = z$$
 \therefore $\frac{\partial h}{\partial N_{\phi}} = z$ \Rightarrow $h = z \int_{0}^{N_{\phi}} \partial N_{\phi} = z N_{\phi}$

and:
$$q(z, N_{\phi}) = N_{\phi} - Az$$
 : $\frac{\partial h}{\partial z} = N_{\phi} - Az$ \Rightarrow $h = \int_{0}^{z} (N_{\phi} - Az)\partial z = zN_{\phi} - \frac{1}{2}z^{2}A$

Combining the two: $h(z, N_{\phi}) = zN_{\phi} - \frac{1}{2}z^2A$

Hence the original ODE becomes: $\frac{d}{dz}(zN_{\phi} - \frac{1}{2}z^2A) = 0$

and it's general solution is: $zN_{\phi} - \frac{1}{2}z^2A = C$ where C is a constant

Boundary condition: $N_{\phi} = 0$ when z = 0 \therefore C = 0

hence:
$$zN_{\phi} - \frac{1}{2}z^2A = 0$$

or:
$$N_{\phi}(z) = \frac{1}{2} z A = \frac{1}{2} z \sec \beta (p_0 \tan \beta - p_{\phi})$$
 Q.E.D